强大的数据可视化选项提供数据特性
数据科学和机器学习项目的结构化方法从项目目标开始。同一组数据点可以推断出一些有意义的信息。基于我们所寻找的,我们需要关注数据的另一个方面。一旦我们明确了目标,我们就应该开始考虑我们需要的数据点。这将使我们能够专注于最相关的信息集,而忽略可能不重要的数据集。 在现实生活中,从多个来源收集到的大多数时间数据都有空白值、打字错误和其他异常。在进行任何数据分析之前,清除数据是至关重要的。 在本文中,我将讨论五个强大的数据可视化选项,它们可以立即提供数据特征的感觉。即使在正式建模或假设测试任务之前,执行EDA就可以传达大量关于数据和特征之间关系的信息。 第1步-我们将导入pandas、matplotlib、seaborn和NumPy包,我们将使用这些包进行分析。我们需要散点图、自相关图、滞后图和平行图。
第2步-在Seaborn包中,有一个内置的小数据集。我们将使用"mpg"、"tips"和"attention"数据进行可视化。数据集是在seaborn中使用load_dataset方法加载的。
(编辑:我爱制作网_潮州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |