用三维Demo看懂各种优化算法
在TensorFlow、Keras、PyTorch中都集成了这些优化工具,但它们是如何在一步步迭代中“滑落”到最小值的,你真的清楚吗? 现在有一个机器学习优化算法的Demo,能帮你从图像中直观感受到调参对算法结果的影响,以及各自的优缺点。 它就是ensmallen!它的开发者不仅提供了Demo,还给程序员们打包了一份C++数据库,那我们先来试玩一下吧。 试玩Demo 试玩方法很简单,甚至不需要安装任何软件,进入ensmallen网站,选择Demo标签,就能看到一组优化算法的3D示意图。 页面默认是常见的Adam算法,我们会参数初始值所在位置,也就是图片中的红点,可以用鼠标随意拖动。 中间和右侧的图都是损失函数的“等高线”。中间以不同颜色标记不同高度,右侧直接给出了损失函数的梯度场,以箭头指向表示梯度方向、长度表示梯度大小。可以看出等高线越密集的地方,梯度也越大。 如果觉得上面的损失函数图不够清晰直观,还有高清3D大图:的“玩法”只是Demo很小的一部分,想尝试更多请参见文末的链接地址。 C++程序员福音 千万不要以为ensmallen只是一个好玩的Demo,实际上它还是一个高效的C++优化库。对于用C++来给AI编程的程序员来说,它能对任意函数进行数学优化,解决了C++机器学习工具匮乏的痛点。 ensmallen除了打包基本优化算法之外,用户还可以使用简单的API轻松添加新的优化器。实现新的优化器只需要有一种方法和一个新的目标函数,通常用一到两个C++函数就能搞定。 安装ensmallen需要满足以下要求:
ensmallen中的所有内容都在ens命名空间中,因此在代码中放置一 (编辑:我爱制作网_潮州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |