加入收藏 | 设为首页 | 会员中心 | 我要投稿 我爱制作网_潮州站长网 (http://www.0768zz.com/)- 物联安全、建站、操作系统、云计算、数据迁移!
当前位置: 首页 > 运营中心 > 交互 > 正文

工业4.0来临!未来20年,工业物联网如何推翻工厂运作?

发布时间:2021-06-15 14:27:12 所属栏目:交互 来源:互联网
导读:制造商们正纷纷转向工业物联网(IIoT),以提高工厂效率并防止机器出现故障,但网络安全和延迟等问题仍然存在 可以预想,未来的制造过程几乎是不需要人为干预的。但对于大多数制造商来说,未来仍然遥遥无期。 虽然一些较新的工厂是高度自动化的,但在完全数字
制造商们正纷纷转向工业物联网(IIoT),以提高工厂效率并防止机器出现故障,但网络安全和延迟等问题仍然存在
可以预想,未来的制造过程几乎是不需要人为干预的。但对于大多数制造商来说,未来仍然遥遥无期。
 
虽然一些较新的工厂是高度自动化的,但在完全数字化之前,整个制造过程还有很长的路要走。
 
根据精益制造指标(以整体设备效率或OEE衡量),世界级制造工厂的产能占其理论上所能达到的产能的85%。然而,一般的工厂只能达到约60%,这意味着在生产力方面存在巨大的改进空间。
 
 
 
1
 
 
工业4.0在未来二十年的成熟,将首先需要基本的数字化。之后,这种数字化可以转化为预测性的维护和真正的预测智能。
 
在工业物联网的影响下,制造过程会如何变化?未来会是什么样子?制定过程中会面临什么障碍?
 
数字化过程耗时也耗财
 
大型资本货物已经发展成为“按小时计算”的商业模式,可以保证正常运行时间。现在,在制造业中,按小时(或基于性能的合同)的功率相当普遍,特别是在半导体、航空航天和国防等关键任务领域。
 
该模型几乎确保了制造商寻求有助于提高效率的数字解决方案。
 
这个想法可以追溯到20世纪60年代,当时GE航空、劳斯莱斯和普惠等喷气发动机制造商开始向客户们兜售其产品的“发射运作寿命”,而不是一次性的发动机销售。推动时间推动发动机制造商专注于高利润维护和数字平台。如今,GE鼓励追踪其发动机的每一个细节,因为它只有在发动机正常工作时才能获得报酬。
 
尽管保证了正常运行时间,但机器的所有者需要负责优化使用(就像购买喷气发动机的航空公司仍需要充分利用它们一样)。
 
简而言之,工厂所有者仍然“拥有”机器链之间的输出效率,这意味着提高效率不仅会落在机器所有者身上,还会落在制造商身上。
 
工业物联网
如果没有对每一个细节进行数字化,效率就无法提升。然而,要制造商承担新的数字化负担,还面临着严重障碍。
 
车间内通常会有还可以在未来数十年继续用于制造的旧机器。除了显著的成本之外,传感器跟踪温度和振动,并非出于一般的机器的考虑。
 
当摩托巨头哈雷的制造工厂进行IIoT传感器改造时,该公司总经理Mike Fisher表示,传感器会“使设备更加复杂,而且它们本身也很复杂。但随着复杂性的出现,机会就会出现。”
 
从数字化到预测
 
简而言之,操作技术(或OT)类似于传统IT,但它针对以往未涉及的领域进行了定制。在典型IT堆栈包括台式机、笔记本电脑以及知识工作和专有数据的连接的情况下,OT管理直接控制或监控物理设备。
 
对于制造商,OT堆栈通常包括:
 
- 连接的制造设备(通常带有改装的工业物联网传感器)
 
- 监控和数据采集(SCADA)系统和人机界面(HMI),为操作分析员提供工业监控
 
- 可编程逻辑控制器(PLC),坚固耐用的计算机,可在工厂机器上获取数据
 
- 用于减法制造的3D打印机(增材制造)和计算机数控(CNC)机器(如削减块)
 
在某种程度上,IT和OT是同一技术范围的两个方面,随着制造业得到更好的数字化改进,这些边界将进一步模糊。
 
今天,大多数工业机器的“大脑”都在可编程逻辑控制器(PLC)中,它们是增强型计算机。西门子、ABB、施耐德和罗克韦尔自动化等工业巨头都提供高价PLC,但对于规模较小的制造企业而言,这些可能会不必要地昂贵。
 
这为像Oden Technologies这样的初创公司创造了一个机会,可以带来现成的计算硬件,可以直接插入大多数机器,或者集成现有的PLC。这反过来又允许中小型企业更加精简,并实时分析其效率。
 
随着数字化无处不在,技术效率改进的下一波浪潮将是预测分析。每个输送机和机器人执行器都会安装一个传感器,但并非它们在所有的工厂功能都具有相同的价值。
 
目前,完全有可能从更专业、高度更精确的物联网传感器中释放更多价值。例如,Augury使用配备AI的传感器来监控机器,并预测故障。
 
注重成本的工厂所有者将认识到,高度精确的传感器将比不必要的物联网提供更高的投资回报率。
 
前沿的新架构
 
在“边缘”或更接近传感器处完成的计算是IIoT架构中的新趋势。
 
起草人工智能和智能硬件的创新,a16z的Peter Levine预计会结束AV,无人机和高级物联网对象的云计算。
 
未来工厂的连接机器应该没有什么不同。
 
像Saguna Networks这样的公司专注于边缘计算(接近收集点),而Foghorn Systems则进行雾化计算。这两种方法都允许关键任务设备能在安全的环境下运行,而不会将所有数据传输到云端,这一过程可以节省大量带宽。

(编辑:我爱制作网_潮州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读